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Abstract 
 

Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with 

respect to the interchange of point sources and receivers. These systems use the light 

received from a low power emitter on or near a target to compensate profile aberrations 

acquired by a laser beam during linear propagation through random media. If, however, 

the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO 

correction. Here we examine the consequences of this breakdown. While discussed for 

general random and nonlinear media, we consider specific examples of Kerr-nonlinear, 

turbulent atmosphere.  

 

 

 

 

 

 

 

 

 

 

 



Optical configurations often exhibit reciprocity, or symmetry with respect to the 

interchange of point sources and receivers [1-3]. It is precisely this symmetry that enables 

adaptive optics (AO) correction of laser beam profiles delivered to targets in random 

media. AO correction uses the light received from a low power emitter, or beacon, on or 

near the target to adjust the laser beam’s spatial profile [2,4-9]. In a reciprocal 

configuration, every ‘ray’ in the beacon has a reciprocal partner in the beam. These rays 

traverse the random media along identical paths but in opposite directions. Thus by 

reversing the rays along the phase front, or phase conjugating, the beacon irradiance 

profile can be reproduced at its source. Often, however, the rays on the incoming and 

outgoing paths experience differing dielectric environments. The medium evolves, or as 

is the interest here, the power in the beam surpasses that of the beacon, leading to 

differences in the nonlinear refraction on the outgoing and incoming paths.  

Here we examine the nonlinear breakdown of reciprocity occurring when a low 

power beacon informs the phase correction of a high peak power laser beam. We 

introduce a metric, an overlap of the beacon and the beam fields, that quantifies the 

breakdown, and provides a necessary and sufficient condition for reciprocity. The metric 

is applied to the specific case of field conjugated high power beams propagating through 

Kerr-nonlinear turbulent atmosphere. The degree of overlap, henceforth referred to as 

reciprocity, is found to drop rapidly at powers approaching the critical power for self-

focusing. In the strong turbulence, the reciprocity increases due to spatial incoherence 

weakening self-focusing. A rough scaling, explaining this behavior, is derived. Finally, 

we find that the drop in reciprocity is dominated by phase differences between the beacon 

and beam, suggesting that AO correction can be effective when the on-target irradiance is 

important, but not the phase. 

While there are several types of beacons and variations on AO implementations 

[2,4-9], we consider a simple optical configuration that illustrates the salient physical 

phenomena. The configuration is displayed in Fig. 1. A static random medium separates 



the target plane on the right from the receiver plane on the left. The beacon resides in the 

target plane, and the receiver plane coincides with the laser beam transmitter plane. The 

beacon light propagates through the random medium and is collected in the receiver 

plane where its phase and amplitude are measured. The conjugate phase and amplitude 

are then applied to a laser beam, which propagates back to the target through the same 

random medium. In Fig. 1 the different colors of the beacon and laser beam are for 

illustrative purposes only; their wavelengths, in actuality, would be quite similar.  

To model the light propagation, we use the scalar paraxial wave equation. We 

note, however, that the conceptual discussion of reciprocity and its breakdown applies to 

other wave equations as well, including the vector and scalar Helmholtz equations. The 

transverse electric field, E⊥ , consists of a carrier wave modulated by a slowly varying 

envelope, E :    E⊥ (x,t) = 1
2 E(x)exp[i(kz −ωt)]+ c.c.  where ω  is the carrier frequency,   k =ωn0 / c , 

and   n0  is a reference refractive index. The envelope evolves according to  

   
∂
∂z

E(x) = i 1
2k

∇⊥
2 + 2k 2n0δn(x)⎡⎣ ⎤⎦E(x)                                     (1) 

where 0( ) ( )n n nδ = −x x  is the refractive index shift and    n(x)  the total refractive index. The 

refractive index shift consists of spatially dependent linear and nonlinear components. 

The linear component, 
 
δnL = δni +δnf

, accounts for gain or dissipation,  δni , and random 

fluctuations in the medium,  δnf . The fluctuations have zero mean when averaged over an 

ensemble of statistically independent instances. The nonlinear component, ( )NLn Iδ , is a 

function of the intensity,    I = 1
2 cε0n0 | E(x) |2 . Explicitly,

 
δn = δni +δnf +δnNL

 with   Im[δn]= δni .  

In the following, we make use of the Green’s functions for Eq. (1). In particular, 

we define 
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where ( , ; , )G z z+ ′ ′r r  and ( , ; , )G z z− ′′ ′′r r  propagate the field when z z′>  and  z z′′<  respectively. 

While we never calculate it explicitly, the Green’s function provides a succinct 

description of reciprocity. Multiplying Eq. (2a) by ( , ; , )G z z− ′′ ′′r r  and Eq. (2b) by ( , ; , )G z z+ ′ ′r r

, subtracting the results, and integrating over all space, we find the reciprocity 

relationship ( , ; , ) ( , ; , )G z z G z z+ −′ ′ ′ ′=r r r r : the linear optical configuration is symmetric with 

respect to the interchange of point sources and receivers. This symmetry holds even in 

the presence of gain and dissipation. In the absence of these, 0inδ = , one can follow a 

similar derivation to demonstrate the equivalence of reciprocity and reversibility in the 

axial coordinate: *( , ; , ) ( , ; , )G z z G z z+ −′ ′ ′ ′=r r r r . Reversibility implies reciprocity, but the 

converse is not true. 

We continue by describing an idealized AO system that illustrates the importance 

of reciprocity [2]. We denote the beacon and laser beam electric field envelopes as    EB (r, z)  

and    EL(r, z)  respectively. The receiver/transmitter resides at   z = 0  and the target at  z = zT . 

For this example, we take 0inδ = ; when   δni = δni (z) , the amplitudes can be adjusted 

retroactively by the appropriate exponential factor,   exp[k ∫δni (z)dz] . The Green’s function 

( ,0; , )TG z− ′r r  propagates the beacon field from the target to the receiver: 

   EB (r,0) = i ∫G− (r,0; ′r , zT )EB ( ′r , zT )d ′r . At the receiver, the AO system applies the conjugate 

profile to the outgoing beam,    EL(r,0) = −i ∫G−*(r,0; ′r , zT )EB
* ( ′r ,0)d ′r . The Green’s function 

( , ; ,0)TG z+ ′r r  propagates the beam from the transmitter to the target: 

   ET (r, zT ) = i ∫G+ (r, zT ; ′r ,0)EL( ′r ,0)d ′r  , which upon substitution of the outgoing beam field 

provides    ET (r, zT ) = ∫ ∫G+ (r, zT ; ′r ,0)G−*( ′r ,0; ′′r , zT )EB
* ( ′′r , zT )d ′′r d ′r . If the channel is reciprocal, the 

on-target beam field reduces to    EL(r, zT ) = EB
* (r, zT ) . The AO system has exploited 

reciprocity to illuminate the target with the conjugate field of the beacon.  
The nonlinear refractive index,  δnNL , was excluded in this example, and neither 

the beacon nor the beam propagated nonlinearly. Moreover, the Green’s function, a linear 

construct, was used to define the conditions of reciprocity and reversibility. To 

demonstrate nonlinear reciprocity and reversibility, we divide propagation over a total 



distance L  into N  steps of size /z L NΔ = . Forward and backward propagation over a 

single step are expressed as  

    Ez (r) = ∫ H ∓ (r,z; ′′r ,z ± Δz)Ez±Δz ( ′′r )d ′′r ,                           (3a) 

    

H ∓ (r,z; ′′r ,z ± Δz) =

− ∫G∓ (r,z; ′r ,z ± Δz
2 )eikΔzδnNL

h

G∓ ( ′r ,z ± Δz
2 ; ′′r ,z ± Δz)d ′r            

(3b) 

where    δnNL
h = δnNL[I ( ′r , z ± Δz

2 )] , and G+  and G−  are defined as before. Successive application 

of the integral in Eq. (3a) propagates the envelope over multiple steps. It is clear from Eq. 

(3b) that if the linear configuration is reciprocal, then ( , ; , ) ( , ; , )H z z z H z z z+ −′ ′− Δ = − Δr r r r , and 

if it is reversible then *( , ; , ) ( , ; , )H z z z H z z z+ −′ ′− Δ = − Δr r r r . By using these relations for H ±  in 

an expression where Eq. (3a) is successively applied and taking the limit of infinitesimal 

zΔ , one can show that a nonlinear configuration with real intensity dependent refractive is 

reciprocal or reversible.  

This nonlinear reciprocity can be applied to our AO example when the beacon 

and beam experience identical optical configurations. From a practical standpoint, 

however, the propagation of the beacon light from the target to the receiver, and the 

propagation of the beam from the transmitter to the target can occur under different 

conditions. The random media may change in time or, as is the interest here, the power of 

the beacon and beam may differ. This results in an effective breakdown of reciprocity. 

The symmetry breaking can be expressed symbolically by parameterizing H ±  with the 

beacon and beam powers, ( , ; , ; ) ( , ; , ; )L BH z z z P H z z z P+ −′ ′− Δ ≠ −Δr r r r  where j jP I d= ∫ r . 

Conceptually, nonlinear refraction causes the beacon and beam rays to take different 

paths through the medium.  

In order to quantify the breakdown of reciprocity along the propagation path, we 

define the following metric: 

   
R(z) ≡ 1

2
ε0c

[PB(z)PL(z)]1/2 EB(r,z)EL(r,z)∫ dr ,                         (4) 



where   | R |≤1 . Equation (4) is simply the overlap of the beam and beacon fields. The 

normalization was chosen such that if the beam field is everywhere the conjugate of the 

beacon field,   R = 1 . As a result, the criterion   R(z) = 1  for all  z  provides a necessary and 

sufficient condition for reciprocity of an optical configuration.  

A few examples aid in the interpretation of  R . First consider the idealized AO 

system discussed above. When the beacon and beam have identical powers, we showed 

that    EL(r, zT ) = EB
* (r, zT ) , which can be straightforwardly generalized to    EL(r, z) = EB

* (r, z) . 

Inserting this field into Eq. (4), we find   R(z) = 1  for all  z . Suppose  EL  and  EB  have 

identical amplitudes but are everywhere phase shifted by / 2 ( )π π , then ( 1)R i= − :   arg(R) ≠ 0  

always indicates a phase difference. If  EL  and  EB  are spatially disjoint, implying that 

their ‘rays’ propagate through wholly different regions of the random medium, then   R = 0 . 

A value of   | R |<1  does not, however, indicate a unique spatial phase difference and 

irradiance disjointedness.  

To demonstrate application of this metric, we simulated the optical configuration 

illustrated in Fig. 1 for the case in which the random media is dissipationless, Kerr-

nonlinear, turbulent atmosphere. The Kerr nonlinearity, 2( )NLn I n Iδ =  where   n2  is second 

order nonlinear refractive index, permits the well-known phenomenon of self-focusing 

and beam collapse [10,11]. The ratio of the total beam power to the critical power, 

  Pcr ~ λ 2 / 2πn0n2 , parameterizes the effect. For an initially collimated Gaussian beam with 

spot size  w , the collapse distance in uniform media was developed by Marburger: 

  zc = 0.18kw2 /{[(P / Pcr )1/2 − 0.85]2 − .022}1/2

  for  P > Pcr  [10]. Here we limit the propagation to 

distances well less than  zc
.  

The simulation involves three steps. In the first step, the beacon field is 

propagated from the target to the receiver using Eq. (1) with  δnf  included as phase 

screens [11-13]. The modified Von Karman spectrum was used for the Fourier transform 

of  δnf ’s covariance [13-15]. The second simulation step initiates the laser beam envelope 

with the conjugated and amplified receiver plane beacon envelope:    EL(r,0) =ηEB
* (r,0)  with 



 η >1 . In the third step, the beam is propagated to the target, encountering the same phase 

screens as the beacon at the appropriate axial positions.  

In all of the simulations presented, the initial beacon field had a Gaussian profile, 

   EB (r,0) = E0 exp(−r 2 / w2 ) . The amplitude,   E0 , was chosen such that the power,   PB = π
4 cε0n0w2E0

2  

was far below  Pcr , ensuring linear propagation. The initial beam power,  PL , was varied 

from below  Pcr  to above  Pcr . Statistical quantities, such as ensemble averages, denoted by 

〈 〉 , and standard deviations, were obtained by simulating the propagation through 103 

statistically independent realizations of the turbulence.  

We considered an atmospheric propagation regime where four parameters are 

required for characterization:   PL / Pcr  which has already been discussed, the Rayleigh 

length   ZR = 1
2 kw2 , the Rytov variance   σ r

2 = 1.2Cn
2k 7/6z11/6   where   Cn

2 is the refractive index 

structure constant, and the turbulence inner scale length   ℓ0 . For simplicity, the 

propagation distance was limited to   zT = 0.12ZR , such that in the absence of index 

fluctuations the beacon would be collimated. The Rytov variance describes the 

normalized intensity variance of a plane wave, and provides a convenient metric for the 

optical turbulence strength [14,15]. In particular   σ r
2 >1  provides a rough condition for 

strong optical turbulence. The ratio of the inner scale to the laser spot size determines the 

relative importance of beam spreading and wander, with wander dominating when 

   ℓ0 / w >>1 . In these simulations, the inner scale length was fixed at    ℓ0 = w / 8 . 

Figure 2(a) displays the ensemble averaged   R(zT )  as a function of   PL / Pcr  for a 

turbulence strength of   σ r
2 = 6.8 . The dots, squares, and triangles represent the means of 

  | R(zT ) | ,   Re[R(zT )] , and   Im[R(zT )]  respectively. The swath boundaries illustrate +/- the 

standard deviation of | ( ) |TR z . The real (imaginary) component of   R(zT )  decreases 

(increases) with increasing beam power consistent with modified propagation of the 

beam due to nonlinear focusing. We return to the apparent scalings, 2Re ( ) 1 ( / )T L crR z P P〈 − 〉 ∝ −   

and Im ( ) ( / )T L crR z P P〈 〉 ∝  for / 1.0L crP P < , below. The standard deviation of | ( ) |TR z  increases 

with the beam power, demonstrating that, even when phase-corrected, high power beam 



propagation is sensitive to the specific realization of turbulence. As an example, Figs. 

2(c) and (d) show two instances of on-target intensity profiles for a beam with   PL / Pcr = 1.5 . 

Figure 2(b) displays the initial beacon intensity profile for comparison. In Fig. 2(d) 

  | R |= 0.96 , which, by visual inspection, reproduces the beacon profile more closely than 

Fig. 2(c) where   | R |= 0.28 . However, as we will see below, the degree of reciprocity cannot 

be judged solely by similarity of the intensity profiles. 

In Fig. (3) the quantities   (PL / Pcr )−2 Re〈R(zT )−1〉 and   (PL / Pcr )−1 Im〈R(zT )〉  are plotted as a 

function of 2
rσ  for three different powers. The curves nearly overlap, illustrating the 

/L crP P  scaling. Both the real and imaginary components first drop; then, 

counterintuitively, increase with turbulence strength. A rough scaling can be derived to 

explain this behavior. The total nonlinear phase acquired by the beam can be 

approximated as 2| ( ) |~ 2( / )( / ) 2L L cr Rk n I dz P P z Z α∫ ≡x . If this phase is small, we can condense it 

into a single screen applied to the beam at the transmitter. Using this approximation and 

reciprocity, one can show  

   
〈R(z)〉 −1≈ − 4α

πw2 i 〈 Î R
2 (r)〉∫ dr +α 〈 Î R

3 (r)〉∫ dr⎡
⎣

⎤
⎦                    (5) 

where 0
ˆ /R RI I I=  and 0I  is the beacon’s peak intensity. Equation (5) reproduces the   PL / Pcr  

scaling observed in Figs. (2) and (3). Unfortunately, completing the integrals in Eq. (5) 

requires knowledge of the 4th and 6th order statistics [15]. To progress, we use rough 

dimensional arguments:    ∫〈 Î R
2 (r)〉dr ~ wR

2 〈 Î R
2 〉 ~ wR

2 (1+σ I
2 )  and    ∫〈 Î R

3 (r)〉dr ~ wR
2 〈 Î R 〉〈 Î R

2 〉 ~ (1+σ I
2 ) , where   wR

2  

is the average spot size at the receiver, 2 2 2/ 1I R RI Iσ = 〈 〉 〈 〉 −  is the scintillation index, and we 

have used power conservation. This provides 2Im (1 )IR α σ〈 〉 ∝ +  and 2 2Re 1 (1 )IR α σ〈 − 〉 ∝ − + . 

The above scaling suggests that the dip and rise in R〈 〉  with 2
rσ  result from the 

same behavior observed in the scintillation index [14,15]. In the weak turbulence regime, 

the spatial phase distortions increase with turbulence strength. This, in turn, enhances the 

irradiance fluctuations causing   σ I
2  to grow. The initial drop in R〈 〉  can thus be interpreted 

as follows. At low powers, every beam ‘ray’ has a reciprocal beacon ‘ray’. The rays 



travel through the turbulence along the same path, but in opposite directions. At high 

powers, the beam ray undergoes nonlinear refraction, continually deviating it from the 

path of its reciprocal counterpart. The random refraction experienced along the deviated 

path increases with turbulence strength, leading to greater, on average, path differences 

between the rays. This leads to a spatial phase difference and irradiance profile 

disjointedness at the target.  

In the strong turbulence regime, the light becomes sufficiently spatially 

incoherent that the irradiance fluctuations saturate. The irradiance profile resembles that 

resulting from a collection of random sources [16]. The effective critical power for an 

incoherent beam is greater than that of a coherent beam, effectively causing the beam 

propagation to become more linear [11,17]. This linear-like propagation results in the 

increase of R〈 〉  with turbulence strength.   

Departures of | |R  from unity can occur from both spatial phase differences and 

irradiance disjointedness between the beacon and beam. For many applications, such as 

power beaming and directed energy, the on-target quality of the irradiance profile, not the 

phase, is of primary interest. To examine this, we define a modified reciprocity metric  

   
RI (z) ≡ 1

2
ε0c

[PB(z)PL(z)]1/2 EB(r,z)EL(r,z)∫ dr .                     (6)  

This metric accounts only for the amplitudes of the beacon and beam, and, as a result, 

satisfies the condition   RI ≥| R | . Figure (4) displays a comparison of | |R〈 〉  and IR〈 〉  as a 

function of   PL / Pcr  for   σ r
2 = 4.6 , the minimum of the reciprocity curve in Fig. (3). Figure (4) 

demonstrates that the loss in reciprocity is due primarily to phase differences between the 

beacon and beam and not irradiance disjointedness.  

We have examined nonlinear reciprocity breakdown when AO phase correction is 

applied to high power laser beams propagating in random media. A metric, the overlap of 

a high power beam field and that of a beacon, was used to quantify reciprocity breaking. 

As an example, an ideal field-conjugation based AO implementation was applied to 



propagation through Kerr-nonlinear atmospheric turbulence. The reciprocity was found to 

drop with increasing beam power due primarily to spatial phase differences between the 

beacon and beam. This suggests AO correction can be effective in high power laser 

applications insensitive to phase quality.  
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Figure 1. A beacon located on a target embedded in a random medium informs the phase 

and amplitude of a laser beam incident on the target.  

	  

 

 

 
	  

 
	  
	  
	  
	  
	  
 

Figure 2. (a) Ensemble average of   R(zT )  as a function of   PL / Pcr  for   σ r
2 = 6.8 . The dots, 

squares, and triangles show the means of   | R(zT ) | ,   Re[R(zT )] , and   Im[R(zT )]  respectively, and 

the swathes +/- the standard deviation of   | R(zT ) | . (b) the initial beacon intensity profile on-

target. (c) and (d) examples of low,   | R |= 0.28 , and high,   | R |= 0.96 , degrees of reciprocity, at 

  PL = 1.5 Pcr . The reciprocity drops with increasing power due to nonlinear propagation of 

the beam. 



	  

 

 

Figure 3. Ensemble average of 2( / ) Re ( ) 1L cr TP P R z− 〈 − 〉  and 1( / ) Im ( )L cr TP P R z− 〈 〉  as a function of 

2
rσ  for   PL = 0.25 Pcr  red triangles,   PL = 0.5 Pcr  green squares, and   PL = 1.0 Pcr  blue circles.  

 

 

Figure 4 ensemble averages of | ( ) |TR z , blue circles, and | ( ) |I TR z , red triangles, as a 

function of   PL / Pcr  for   σ r
2 = 4.6 . The swathes indicate +/- the standard deviation.  

 


