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For image phase-based super-sampling, an image sequence consisting of slightly displaced frames is up-sampled,
aligned, and averaged into a single larger image that possesses image resolution exceeding the limitations of the
imaging system. This process obtains a significant portion of high-resolution phase information and models the
missing magnitude using deconvolution or reconstruction algorithms. Three simulations are presented in which a
32-frame sequence with the size 256 by 256 pixels is processed to create a single 4096 by 4096 pixel image with pixel
level resolution. An empirical test was also conducted showing resolution beyond the digital sampling resolution
limit of the camera. ©2020Optical Society of America

https://doi.org/10.1364/AO.396437

1. INTRODUCTION

The resolution of a digital imaging system is limited by the
optical cutoff as defined by the front aperture diameter and the
digital sampling frequency limited by the pixel size on the focal
plane array. Super-sampling, also referred to as super-resolution
reconstruction (SRR), [1] is an image processing method that
combines a sequence of slightly displaced images with the goal
of producing a single larger image with resolution that exceeds
the capability of the imaging system. The scene in the sequence
is typically static, but the field of view (FOV) for each image is
slightly shifted in order to provide sub-pixel information. While
this method is generally used to improve resolution in video,
[2–4] our interest is in the prospect of replacing a large
monolithic telescope with an array of smaller, less expensive
telescopes.

Most super-sampling methods consist of the following
steps [5]:

1. Capture a sequence of images of a static scene where each
frame is shifted providing sub-sampling information.

2. The pixel values of each image are aligned on a super-grid to
create a single image.

3. A de-blurring method is applied to reveal increased image
resolution.

In many techniques, alignment is achieved on a pixel-by-
pixel basis. An algorithm is employed to determine the specific
value for each pixel of the super-sampled image based on
information from the frames, as with the Drizzle method [6].
Our approach [7], designated image phase alignment super-
sampling (ImPASS), has the “instrument” images up-sampled,
aligned, and averaged, as depicted in Fig. 1, producing a blurry
image. Blind deconvolution, typically self-deconvolving data

restoration algorithm (SeDDaRA) [8], is applied to produce the
high-resolution content.

Here, we discuss and demonstrate how ImPASS reveals scene
features in the super-sampled image that are much smaller than
a pixel in original instrument images. This is accomplished in
frequency space by obtaining image phase information and
modeling the missing magnitude information. This ability
is demonstrated in three simulations and tested empirically.
Application of ImPASS to simulated sets shows that with ade-
quate knowledge of the translation differences between images
and a good model for the spatial frequency distribution, high
levels of image resolution can be achieved.

2. BACKGROUND

Image sequences used for super-sampling are typically produced
by translating a camera while imaging a static scene [2,5], being
first, to the best of our knowledge, described in 1984 [9] and
applied on Voyager Martian images in 1993 [10]. The use of
multiple cameras to capture the scene simultaneously, although
fundamentally equivalent, has been reported more recently
[11,12]. A camera/telescope array has the advantage of produc-
ing super-sampled images of dynamic scenes, but with increased
cost and complexity.

While the benefits of super-sampling have been discussed
at length in the literature [13], the limits of super-sampling are
discussed less frequently. The figure of merit is magnification as
defined by

Mss ≡

√
number of pixels in the super− sampled image

number of pixels in instrument image
,

(1)
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Fig. 1. Flow chart for achieving a super-sampled image from a
sequence of slightly displaced images of a static scene by applying
image registration and blind deconvolution.

describing the upper limit of super-sampling that resolves
objects with the size of a single pixel. Lin and Shum [14] first, to
the best of our knowledge, described limitations based on the
uncertainty in the registration method and noise. According to
their paper, the level of magnification that can be achieved using
reconstruction-based super-sampling is

Mss < g (Mss)

√√√√ δ̂h

δe + (σh + δ̂h)δp
, (2)

where g (Mss) is a weighting function that has a maximum value
of one, δ̂h is the average deviation of the signal, δe is the noise
level, σh is the variation of details in the image (more variation
provides more information to register the images), and δp is the
accuracy of the image alignment. The authors used this formula
to put an upper limit on Mss of 1.6 in practical situations and
5.7 for synthetic situations. While the accuracy of the equation
is debated in later articles [15,16], it reveals a common sense
concept that the highest obtainable Mss increases with increased
signal-to-noise ratio (SNR) and decreases with uncertainty
in image alignment. As such, one can achieve high Mss if the
relative positions of the low resolution and low noise images are
precisely known. In later articles, Pham et al. discussed achiev-
ing Mss = 4, and Robinson and Milanfar [15] suggested that
Mss = 5 can be obtained.

There has also been an increasing number of papers that
describe achieving resolution from an optical system beyond the
limit imposed by the front aperture diameter, such as works by
Tsang et al. [17] and Wang et al. [18]. This is also expressed in a
2017 paper by Tham et al. [19].

For a given imaging system and a fixed number of collected
photons, Tsang, Nair, and Lu observed that the Fisher infor-
mation carried by the intensity of the light in the image plane

(the only information available to traditional techniques,
including previous super-resolution approaches) falls to zero as
the separation between the sources decreases; this is known as
“Rayleigh’s Curse.” On the other hand, when they calculated
the quantum Fisher information [20] of the full electromagnetic
field (including amplitude and phase information), they found
that it remains constant. In other words, there is infinitely more
information available about the separation of the sources in the
phase of the field than in the intensity alone.

While we are not claiming to achieve such a feat here, the
concept that phase can be captured beyond limits of the imaging
system is demonstrated with ImPASS [21,22].

3. MAGNITUDE AND PHASE

ImPASS succeeds by manipulating images in frequency space.
The application of the Fourier transform to an image I (x , y )
produces a magnitude component and a phase component:

I (u, v)=
∫∫

∞

−∞

I (x , y )e−2πi(xu+yv)dxdy , (3)

= |I (u, v)|e i∠I (u,v), (4)

where the magnitude |I (u, v)| and phase ∠I (u, v) can be
calculated from the real and imaginary components produced
by the transform using

|I (u, v)| =
√

Ir (u, v)2 + Ii (u, v)2, (5)

∠I (u, v)= arctan[Ii (u, v)/Ir (u, v)], (6)

where (u, v) are the coordinates in frequency space.
Conceptually, the magnitude provides information about
the distribution of spatial frequencies in an image. Low spatial
frequencies are represented near the center and high frequencies
near the borders. The phase provides information as to where
the spatial frequencies are located and often resembles white
noise. The phase defines points, edges, and shading in the image
and produces the visual representation of the scene. If one alters
the magnitude component in frequency space, application of an
inverse Fourier transform produces a result that softens but does
not remove features. However, when the phase is altered, as in
Fig. 2, portions of the image disappear.

As an illustration, a fast Fourier transform (FFT) was applied
to the images of Frankenstein and the Wolfman, shown in
Fig. 3. The magnitude and phase components were swapped.
An inverse FFT applied to each swapped image demonstrates
that visual aspects of the scene follow the phase component. The
hazy image artifacts are produced by the mismatch of the low
frequency distributions in the two images. These artifacts are
diminished if we retain the low spatial frequencies from each
image, as demonstrated in Fig. 4. The final image is a combina-
tion of the whole phase from Frankenstein, the low frequency
portion of the Frankenstein magnitude, and the high-frequency
portion of the Wolfman magnitude.

We have designated this process of replacing the magnitude
of one image with another “Frankenstein” reconstruction, and
it plays an important role in this analysis. When one applies a
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Fig. 2. Phase of an image (top) was multiplied by 0.5 while in
frequency space. The inverse transform (bottom) is missing elements
and has artifacts.

Fig. 3. When the phase and magnitude of two images are swapped
in frequency space, the image content follows the phase information.
(Picture credits to Universal Studios, public domain.)

Fig. 4. If the low-frequency portion of the magnitude is preserved
during the swap, artifacts from the Frankenstein reconstruction process
are reduced.

deconvolution method to remove blur in an image, the decon-
volution alters the magnitude to match a desired distribution
but does not change the phase information. The Frankenstein
technique explicitly replaces a portion of the magnitude with
that from another image to achieve a desired distribution. A
Frankenstein reconstruction can outperform a deconvolution
method when a very good model of the scene is available, which
is the case for our simulations. This allows us to improve the
simulation and seek out limitations of the algorithm under
optimum conditions.

4. PROCESSING APPROACH

Once an image sequence, Ii (m, n), where i is in the frame index,
has been captured or simulated, image registration is applied
to measure the geometric differences between images. The
differences can include rotation, scale, and perspective, but, for
simplicity, our focus is restricted to translations. To measure
the translational differences between images, phase correlation
[23] is applied to the set of instrument images. If the alignments
are known, such as the case with the simulations, this step can
be bypassed. Each instrument image is up-sampled iteratively
in scale steps of two using linear interpolation until the desired
Mss is reached. The images are aligned and averaged together.
Deconvolution or reconstruction reshapes the magnitude to
produce the final super-sampled image ISS(m, n).

We have employed four methods of deconvolution with vary-
ing levels of success: SeDDaRA, CARon, Frankenstein, and the
interactive data language (IDL) version of maximum likelihood.
SeDDaRA boosts the magnitude of a blurred image to match
a non-blurred reference image with the desired distribution
[8]. The CARon method is an approximation of SeDDaRA,
where the reference image is replaced by a constant value [24].
Maximum likelihood is a common iterative deconvolution
method with many variations [25].

When a single image of size 256 by 256 pixels (2562 for
brevity), for example, is up-sampled to 10242, there is no
increase in spatial resolution. In Fourier space, the magnitude
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of the up-sampled image has no additional information outside
of the central 2562 block. Even when additional up-sampled
images are added together, no additional information outside
of the 2562 block is produced. As such, the higher resolution
information produced by our process does not result from the
combined magnitudes. Instead, the higher resolution is pro-
duced by the phase information from the combined images.
Before reconstruction or deconvolution, the combined phase
is being multiplied by empty space outside of the 2562 block,
or, as we have found, by artifacts associated with the interpo-
lation process. Application of a deconvolution method, or
Frankenstein, reforms that outer space towards a specific ideal
such that multiplication of the combined phase elements by
the new magnitude model produces an image with spatial
resolution beyond the limits imposed by the camera system.

5. SIMULATED IMAGE SETS AND PROCESSING
RESULTS

The objective of the simulation is to create a sequence of smaller
images with sub-pixel translations from a large image, repre-
senting the scene, for input to ImPASS. The process starts with
the identification of the large image that serves as the control
image, Ic (m, n), having dimensions of Mss(M × N) pixels,
where [M, N] are the dimensions of the instrument image. The
following steps are applied:

1. A copy of the control image is created and designated as the
target image, It(m, n).

2. The target image is translated by a single pixel in either the
X or Y direction. By limiting the motion to integer steps,
artifacts introduced by interpolations are avoided.

3. If desired, blur can be added to the target image using con-
volution to better simulate an optical image.

4. Using multiple interpolation iterations, the target image is
down-sampled to the M by N size, creating Ii (m, n).

5. If desired, noise can be added to better simulate a digitally
captured instrument image.

6. The process is repeated creating additional frames until
there is sufficient sampling of the super-sampled pixel.

Multiple interpolations are required to ensure that all infor-
mation in It(m, n) is used to create a frame Ii (m, n). With
linear interpolation, for example, the value of a pixel is deter-
mined from neighboring pixels at the same location in the
original image. If the change in scale is greater than 2, some
original pixels are not used in the calculation of the interpolated
pixel. That information is lost.

A. Air Force Chart

Our initial tests were performed on a 20482 sized United States
Air Force (USAF)-style digital image. Initial tests using Mss = 4
and Mss = 8 proved successful. To study MSS = 16, the USAF
image was rotated in 90 deg increments and positioned to create
a 40962 image, as shown in the Fig. 5 (top left). Using the sim-
ulation process, a sequence of 32 frames, with no noise or blur,
was created and down-sampled to 2562. A 642 portion of one
frame of the instrument image set is shown in the top right to
demonstrate the level of pixelation.

Fig. 5. Upper left corner is a 40962 image that was created from a
20482 digital representation of the USAF chart. A 642 region of the
instrument image is shown in the top right. The restoration, in the
lower left corner, possesses similar qualities to the truth image, lower
right.

The frames were up-sampled to size 40962, aligned, and
averaged together. The Frankenstein reconstruction is on the
bottom left of Fig. 5, and a truth image is to the right. Close
inspection shows that with full knowledge of the translations
and a near-perfect model of the magnitude (an inverted truth
image), we are able to recover the full resolution of the 40962

chart from a sequence of 2562 images to achieve MSS = 16.
An important question is how many frames are required in an

image set to fully sample a super-sampled pixel. In an earlier test
for MSS = 16, our set consisted of 16 frames, where each frame
was displaced by the equivalent of 1/16th of a pixel in both the x̂
and ŷ directions. The results were satisfactory, but the rounded
portion of the numbers had a staircase quality. The frame count
was increased to 32, where the first 16 frames were displaced by
1/16th of a pixel in the x̂ direction, and the following 16 frames
were displaced by 1/16th of a pixel in the ŷ direction. With more
images, the rounded portions of the numbers appear closer to
the truth image in the processed result.

We also note that the processing produces some image arti-
facts that include ringing from edges and a cross-hatch pattern
in flatter fields. These artifacts are created whether using either
Frankenstein reconstruction or SeDDaRA deconvolution.
Mitigation of the artifacts is left for further study.

B. Extended Scene

The method was then tested on an extended scene; an aerial
image of Barcelona originally sized as 20482 and mirrored like
the resolution chart to create a 40962 image. A sequence of
thirty-two 2562 frames with sub-pixels translation was cre-
ated, where a 1282 portion of the instrument image is shown
in Fig. 6. Taking the magnitude model from the truth image,
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Fig. 6. (Top) The top-left quadrant, sized 1282, of the instrument
image from an extended scene. (Bottom) The top-left quadrant, sized
20482, in which the truth image was used to model the magnitude for
the reconstruction. (Image used with permission, courtesy of Màrton
Mogyorósy photography.)

the reconstruction exhibits vehicles and trees with significant
detail that could only have been seen as individual pixels in
the instrument image. The lines on the street and crosswalk
in the middle, having a width of a pixel, are not at all visible in
the instrument image. Aside from the 32-pixel border region,
the level of resolution is consistent throughout the entire image.

By using the control image as the magnitude model, we are
able to determine the effectiveness of the simulation process and
assess the detail that is retained in the super-sampling process.
In a real-world application, the truth image is not available.
Figure 7 (top) shows a Frankenstein reconstruction that used an
aerial image of New York for the magnitude model. Objects in
the previous reconstruction are still apparent in this reconstruc-
tion. Pixel-sized street lines are still apparent. There is slightly

Fig. 7. (Top) The same quadrant where a different aerial image was
used for the magnitude model in the reconstruction. (Bottom) The
quadrant where the 40962 USAF image was used as the magnitude
model for the reconstruction.

less sharpness to the edges, and the crosswalk in the middle is less
clear. The reconstruction in Fig. 7 (bottom), using the USAF
image from Fig. 5 for the magnitude model, shows additional
image processing artifacts and reduced resolution primarily
in the diagonal directions. Since the USAF image consists of
mainly vertical and horizontal features, similar features in the
reconstruction are still resolved.

C. Discrete Object with Noise

An image of the International Space Station (ISS), shown in
Fig. 8 (top right), was pasted into a 40962 empty image. The
simulation created thirty-two 2562 slightly displaced frames
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Fig. 8. Simulation and processing of an image of the ISS. The
simulated set consisted of thirty-two 2562 frames with added noise
such that the SNR= 32. The top left shows the instrument image,
which is expanded to on the bottom left to show the pixelation. After
up-sampling and averaging, the image is blurry but does show detail
well beyond the instrument image, as shown in the combined image.
The process image has some processing artifacts, but the increased
resolution is evident. (Image Credit: NASA.)

with additive noise such that SNR= 32. An expanded view
of the instrument image reveals that the ISS only covers an
8× 5 pixel region. The combined view shows the result of
up-sampling, aligning, and averaging the images together.
Even before processing, there is additional detail that cannot be
resolved from the instrument image sequence. This information
results from the multiplication of the new phase information by
artifacts in the high-frequency area of the magnitude produced
by the up-sampling interpolation method. The reconstruction
shows some artifacts in the form of ringing. However, details
of the ISS, including gaps between the solar panels and some
features in the central hub are resolved. The noise in the final
image was diminished by the averaging process, resulting in
SNR= 142. When compared to a result that had no additive
noise, the resolution was not significantly diminished.

6. EMPIRICAL TEST AND RESULTS

To test ImPASS empirically, we positioned an Edmund Optics
USAF target onto an X − Y positioner. As the target was moved
a single step in either the vertical or horizontal direction, an
image was taken using a Sony XCD digital camera with 640
by 480 pixels. The camera lens has a focal length of 50 mm
and a front aperture of 17.85 mm. Positioned about 1 m away
from the target, the angular FOV for a 7.4 µm square pixel is
1.45 microradians. The Rayleigh cutoff for a wavelength of
630 nm is 0.43 microradians, limiting optical resolution on
the sensor to 0.29 pixels. This arrangement mimics an array of
cameras viewing a static scene from slightly different positions.

As mentioned above, ImPASS results are improved with
improved knowledge of translations. The graph in Fig. 9 shows
translations of the chart in pixels as measured using the phase

Fig. 9. Translation of the USAF chart by the stepper motor in terms
of pixels as measured using image registration.

Fig. 10. Single 640× 480 pixel frame of the USAF chart series.

correlation image registration [23]. Variations in the data are
evident. With this setup, we cannot yet determine if variations
are produced by uneven steps from the mechanical device or by
errors in the image registration method.

The Edmund Optics USAF chart has a metallic mirror-like
finish with the bars and numbers being transparent. The target
was placed in the reverse (back-facing) position to avoid direct
reflections from the illumination source. White card stock was
positioned behind the transparent apertures to diffusely reflect
light back to the camera. Eighty images were captured while
moving the target in the “L+V” formation shown in Fig. 9.
Each point on the graph is the measured distance in units of
pixels between each frame of the sequence and the control frame
(0,0). The objective is to produce enough sub-pixel information
to produce a super-sampled image with the desired Mss. A single
frame, representing the instrument image, is shown in Fig. 10
and has a SNR= 98. The images were up-sampled to size to
5120× 3840 (potentially Mss = 8) and aligned using the mea-
sured translations times eight. The up-sampled aligned images
were averaged into a single image, which was then cropped to
10242 to ease processing.
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Fig. 11. (Left) The central portion (1282 pixels) of an instru-
ment image. (Right) The central 5122 area after application of
ImPASS. Additional resolution can be seen, but not to the level of the
simulations.

A 1282 portion of the instrument image is shown in Fig. 11,
showing pixelation of the bars and numbers. The processed ver-
sion, using the SeDDaRA approximation [24], shows increased
resolution that has some image artifacts. Many features in the
processed image cannot be seen in the instrument image, such
as the numbers 1 to 6 running down the left side. The shape of
the numbers 2 and 3 can be discerned, and the bars are resolved
down to the 2–3 series, as opposed to the 1–2 series in the
instrument image. According to military standard (MIL-STD)
150 A, this is an improvement in resolution from 0.223 mm to
0.099 mm, which is a 2.25 improvement in the resolution. It
is evident that we have produced resolution beyond the sam-
pling spatial frequencies of the camera. The hope was to show
resolution beyond the Rayleigh cutoff as Tsang theorized [17],

but success may have been limited by the setup. Potential issues
could be the uncertainties in the alignment, a mismatch between
the deconvolution, and the type of point spread function, noise,
or a combination of these factors.

7. CONCLUSION

This paper describes the concept, process, and application of
ImPASS. The ability of the approach to produce image res-
olution beyond the capabilities of the camera system stems
from obtaining phase information beyond the original image
size and modeling the missing magnitude using deconvolu-
tion or Frankenstein reconstruction. The method was applied
successfully, achieving Mss = 16 for a digital USAF chart, an
extended scene, and a small object with noise. Different mag-
nitude models were used for the extended scene, showing only
slight variations in resolution. Resolution was consistent across
the extended scene aside from a border of 32 pixels. Important
considerations for successful application of ImPASS include
good knowledge of the displacements, acquired from a predeter-
mined set-up or an image alignment algorithm, and sufficiently
sampling the super-sampled pixel. While a full investigation of
noise was beyond the scope of the study, we demonstrated that
as a result of averaging, the final result can have higher SNR than
an instrument image, even after reconstruction.

The application of this algorithm to an empirical image set
was successful in obtaining information beyond the digital
sampling limit of the camera. The level of improvement was
considerably less than that achieved in the simulations. Further
study is warranted to determine whether the results are limited
by the uncertainties in the setup, insufficient sampling of the
scene, or the optical resolution of the imaging system.
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